

Technical features

The CB series is a "Switching technology" and "Battery Care philosophy", since years parts of the core know-how at ADEL system, led to the development of this advanced multi-stage battery charging method, completely automatic and suited to meet the most advanced requirements of battery manufacturers. The Battery Care concept is base on algorithms that implement rapid and automatic charging, battery charge optimization during time, flat batteries recovery and real time diagnostic during installation and operation. The Real Time Auto-diagnostic system, monitoring battery faults such as, elements in short circuit, accidental reverse polarity connection, disconnection of the battery, they can easily be detected and removed by help of Blink Code of Diagnosis Led; during the installation and after sell. Each device is suited for all battery types, by means of jumpers it is possible setting predefined curves for Open Lead Acid, Sealed Lead Acid, Gel, Ni-Cd. A rugged casing with bracket for DIN rail mounting provides IP20 protection

115 – 230 – 277 Vac 90 – 305 Vac	Rel Pol
	Pol
90 – 305 Vac	
	Co Din
\leq 16 A \leq 5 msec.	
47 – 63 Hz ±6%	
2.4 – 1.2 A	
4 A	
10 A (MCB curve B)	
nper selection)	Am
28.8 Vdc	Hu Co
2 – 18 Vdc	
5 A ± 5%	No
4 A ± 5%	Con
3.5 A± 5%	Dire
nper selection)	(Cha
14.4 Vdc	Ch
2 – 9 Vdc	Typ cha
6 A ± 5%	blin
6 A ± 5%	2
15 h	
4 min.	
2.23; 2,25; 2,3;	
1,41–1,5 (20 cell.)	
By Jumper Enabling	
By Jumper Enabling	
By Jumper Enabling	
90%	
20 ÷ 100 % / I _n	
≤ 5mA /0mA Vbat<26.3	
4 stage	
Yes	
Yes	
Yes	
Yes	
Yes	
	$\begin{array}{r} 47-63 \ \text{Hz} \pm 6\% \\ 2.4 \ -1.2 \ \text{A} \\ 4 \ \text{A} \\ \hline 10 \ \text{A} (\text{MCB curve B}) \\ \text{nper selection} \\ 28.8 \ \text{Vdc} \\ \hline 2 \ -18 \ \text{Vdc} \\ \hline 5 \ \text{A} \pm 5\% \\ \hline 3.5 \ \text{A} \pm 5\% \\ \hline 3.5 \ \text{A} \pm 5\% \\ \hline 3.5 \ \text{A} \pm 5\% \\ \hline \text{nper selection} \\ \hline 14.4 \ \text{Vdc} \\ \hline 2 \ -9 \ \text{Vdc} \\ \hline 6 \ \text{A} \pm 5\% \\ \hline 6 \ \text{A} \pm 5\% \\ \hline 15 \ \text{h} \\ 4 \ \text{min.} \\ \hline 2.23; \ 2.25; \ 2.3; \\ 1.41 \ -1.5 \ (20 \ \text{cell.}) \\ \hline \text{By Jumper Enabling} \\ \hline 90\% \\ \hline 20 \ \div \ 100 \ \% \ / \ \text{I}_n \\ \hline \leq \ 5\text{mA} \ / 0\text{mA} \ \text{Vbat<} 26.3 \\ \hline 4 \ \text{stage} \\ \hline \text{Yes} \\ \hline \text{Yes} \\ \hline \end{array}$

Output Jumper Selectable: 12 Vdc 6A; 24 Vdc 5 A Power Supply Function: setting by Jumper Suited for the following battery types: Open Lead Acid, Sealed Lead Acid, lead Gel, Ni-Cd, Li-Ion (option) Battery Care for, automatic diagnostic of battery

status, short circuit element, Charging curve IUoUo, constant voltage and current

Switching technology Semi-resonant

Four charging levels: Boost, Absorption, Float, Recovery.

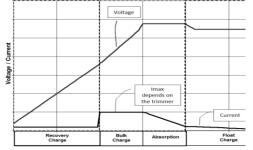
Input: Single-phase 115 ÷ 277 Vac

Protected against short circuit, inverted polarity, over Load.

Signal output (contact free) for fault battery state Protection degree IP20 - DIN rail

Low Battery	Yes		
Fault Battery	Yes		
Type of Signal Output Contact (free switch contact)			
Max. current can be switched (EN60947.4.1):	·		
Max. DC1: 30 Vdc 1 A; AC1: 60 Vac 1A	Resistive load		
Min.1mA at 5 Vdc	Min. load		
General Data			
Insulation voltage (In /Out)	3000 Vac		
Insulation voltage (In / PE)	1605 Vac		
Insulation voltage (Out / PE)	500 Vac		
Protection Class (EN/IEC 60529)	IP20		
Protection class	I, with PE connected		
Reliability: MTBF IEC 61709	> 300.000 h		
Pollution Degree Environment	2		
Connection Terminal Blocks screw Type	2,5mm(24–14AWG)		
Dimensions (w-h-d)	45x110x100 mm		
Weight	0.30 Kg approx.		
Climatic Data			
Ambient temperature (operation)	-25 ÷ +70°C		
De Rating T ^a > 50°C	- 2.5%(ln) / °C		
Ambient temperature Storage	-40 ÷ +85°C		
Humidity at 25 °C no condensation	95% to 25°C		
Cooling	Auto Convection		

Norms and Certifications


Conforming to: EN60950/UL1236, Electrical safety,2014/30/UE,EMC Directive,2014/35/UE (Low Voltage), Safety EN IEC 62368-1, DIN41773 (Charging cycle),Emission: IEC 61000-6-3,Immunity: IEC 61000-6-2.CE

Charging

Type of charging it is Voltages and current stabilized IUoU. The state of charging battery and Auto-diagnosis of the systems are identified by a blinking code on a Diagnosis LED and Battery Fault LED:

	State	Diagnosis LED	Battery Fault LED	
_ 00	Float	1 Blink/2sec	OFF	
	Absorption	1 Blink/sec	OFF	
	Boost – Bulk	2 Blink/sec	OFF	
	Recovery	5 Blink/sec	OFF	
– Auto – diagnosis	Reverse polarity	1Blink	ON	
	Battery No connect	2Blink	ON	
	Element in Short C.	M3Blink	ON	
OB10245A Obarrian Diaman				

CB12245A Charging Diagram

